
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report GreatFire FreeBooks App 08.2017
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, BSc. D. Weißer, Dipl.-Ing. A. Aranguren,
N. Kobeissi, M. Wege

Index
Introduction
Scope
Identified Vulnerabilities

GF-01-003 Android: Possible updater RCE via race condition on SD Card (Medium)
GF-01-006 Backend: Privilege Escalation via Cron-Restart Script (Medium)
GF-01-007 Backend: Sudoers Group does not require a Password (Medium)
GF-01-009 Android: User DoS and Disruption via MediaPlayerService (Medium)
GF-01-010 Android: User DoS and Disruption via RadioPlayerService (Medium)
GF-01-011 Android: User Disruption via PlayerControllerBroadcast (Low)
GF-01-012 Android: Intent Forward via NotificationBroadcastReceiver (Medium)
GF-01-013 Backend: User has Write Access to Github Repository (Medium)
GF-01-014 Backend: Weak file permissions and lack of separation (Medium)

Miscellaneous Issues
GF-01-001 Android: Unencrypted books on the SD Card might trouble users (Low)
GF-01-002 Android: Backup flag might allow data theft (Info)
GF-01-004 Android: Privacy concerns due to screenshot leaks (Info)
GF-01-005 Android: User disruption via TagManagerPreviewActivity (Low)
GF-01-008 Backend: Lack of Consistent Server Hardening (Low)
GF-01-015 Proxy: Static AES Initialization Vector and Encryption Key (Low)
GF-01-016 Proxy: Oversize AES Initialization Vector Buffer Size (Low)
GF-01-017 Proxy: Low resolution non-random Message Key Generation (Low)
GF-01-018 Proxy: Hardcoded Buffer Size value across different Modules (Low)

Notes on Cryptographic Implementations
Conclusions

Cure53, Berlin · 08/25/17 1/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
This report documents the findings of a penetration test against the GreatFire FreeBooks
Android application, its proxy library, and the connected backend servers. The project
was carried out by Cure53 in mid-August 2017 and led to the discovery of eighteen
security-relevant findings.

As for the resources, a time budget allocated to this assignment entailed eight days,
while personnel comprised five members of the Cure53 team. It was agreed that the
investigations will be grounded in a mix-method approach. More specifically, the team
engaged in classic source code audit, as well as performed assisted dynamic analysis of
the sources with the aid of the Android and proxy provided by the GreatFire team.
Verification of the backend server’s security was performed by acquiring SSH access to
two live systems, while root-access was also granted in order to enable full coverage.

It should be noted that the Cure53 team was asked to focus on the Android application in
a very specific realm, namely in terms of the project keeping its security and privacy
promises. Another key area was to verify whether the connected proxy setup safeguards
anonymity of the users. The backend servers also received considerable attention,
especially in the realms of server hardening and classic configuration reviews.

As already noted, the test yielded a total of eighteen discoveries, which were
categorized into a main class of nine vulnerabilities, and a group of also nine general
weaknesses. Importantly, none of the issues were of “High” or “Critical” level in terms of
severity. In other words, the unveiled problems and flaws do not pose urgent risks. The
majority of spotted issues revolve around classic Denial-of-Service, wherein users
cannot rely on the FreeBooks application for normal use. In general, the tests revealed
that GreatFire is quite secure and a low number of actually concerning vulnerabilities
must be addressed in due course.

The report will now shed light on the scope in more detail. Next, each spotted issue will
be described, with special attention on proposed mitigation and fixing advice. In the final
section, some main threads are foregrounded to equip the maintainers of the GreatFire
FreeBooks project with a broader verdict on the security situation at the application at
present.

Cure53, Berlin · 08/25/17 2/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Module 1: Tests against FreeBooks Android App

◦ APK and sources were made available to Cure53.

• Module 2: Tests & Audits against FreeBooks Proxy Library

◦ Source code was made available to Cure53.

• Module 3: Tests & Audits against Server Customization

◦ Access to an example server was given to Cure53.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. GF-01-001) for the purpose of facilitating any
future follow-up correspondence.

GF-01-003 Android: Possible updater RCE via racecondition on SD Card (Medium)
It was found that the GreatFire Free Books application downloads upgrade APKs to a
predictable SD Card location. The downloaded upgrade file is first saved with a
temporary filename (FreeBooks2.0-auto.apk.tmp). Once the download is complete, the
file is renamed to FreeBooks2.0-auto.apk and sent to the Android installer. Since every
application with SD Card permissions can read and write to the SD Card, a malicious
app could leverage this weakness to modify the APK and enforce an installation of a
malicious upgrade.

Another possible attack scenario would be to launch the Android installer with a different
app that looks like the Free Books app while the download is still running in the
background. This way the user would have no way of telling if the upgrade is malicious
or not on the grounds of the UI.

This issue can be verified when the application is opened. If an update is available, an
upgrade dialog is shown. When the user taps on the Download button, the download
initiates and, ultimately, the Android installer upgrade screen will be shown.

Cure53, Berlin · 08/25/17 3/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Upgrade dialog (left) and upgrade process (right)

Under the hood, when an update is available and the user taps on the Download button,
there are several steps that ensue.

• The app downloads the upgrade file as FreeBooks2.0-auto.apk.tmp/

• When the download completes, the file is renamed to FreeBooks2.0-auto.apk

• The Android installer is launched with the upgraded APK.

As this occurs on the SD Card, malicious apps can read and write files, as well as
launch the Android installer at any time during this process. The Impact of this issue can
vary from preventing updates (i.e. corrupting the downloaded upgrade files), to launching
the installer with a malicious upgrade or even app.

The Upgrade APK location can be consulted below.

File Path:
/storage/emulated/0/Android/data/org.greatfire.freebook/files/free/FreeBooks2.0-
auto.apk

Cure53, Berlin · 08/25/17 4/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As long as there is sufficient space available on the device, it is strongly recommended
to download APKs into the protected app storage on Android. In other words, the SD
Card should be avoided. What is more, the file could be given a long and random name,
which is then handed over to the Android Installer. This would need to occur after the
permissions have been set up and immediately after the APK download is complete12.
This would fully eliminate all SD Card manipulation attacks. However, it is still
recommended to delete the APK when the signature check fails to protect against
malicious upgrades, even when app storage for APK downloads is available.

GF-01-006 Backend: Privilege Escalation via Cron-Restart Script (Medium)
While reviewing possible configuration issues on the backend servers at 43.249.37.59
and 192.168.131.231, it was noticed that unsafe usage of cron scripts is present, thus
resulting in a potential privilege escalation vector leading to root. This was noticed in the
following script which is run whenever a reboot happens.

Contents of /etc/cron.d/nginx:
[...]
@reboot root cd /home/ubuntu/CollateralFreedomProxy/backend/nginx &&
./restart.sh
[...]

As one can observe here, the restart.sh script is run with root privileges on each reboot,
while it is actually still writable by the ubuntu user.

-rwxrwxr-x 1 ubuntu ubuntu 632 Jul 17 19:59
/home/ubuntu/CollateralFreedomProxy/backend/nginx/restart.sh

This means that an attacker -- upon having compromised the ubuntu user -- can simply
edit the restart script to contain a little backdoor. S/he could then just wait for the
mechanism to get triggered as soon as a reboot takes place. With the presence of GF-
01-007, attackers can take advantage of more simply attainable options of course, but
this issue should be fixed regardless. As a general rule of thumb, it is recommended to
make sure that all scripts that are eventually run as root can be modified exclusively by
root. This prevents the root user from accidentally running unauthorized commands.

1 http://stackoverflow.com/questions/36755301/how-to-run-install-app-in-internal-files-dir
2 http://stackoverflow.com/questions/36907093/androidsaving-apk-files-in-internal-s...ying-get-an-parsing

Cure53, Berlin · 08/25/17 5/29

https://cure53.de/
http://stackoverflow.com/questions/36907093/androidsaving-apk-files-in-internal-storage-and-install-trying-get-an-parsing
http://stackoverflow.com/questions/36755301/how-to-run-install-app-in-internal-files-dir
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

GF-01-007 Backend: Sudoers Group does not require a Password (Medium)
Another configuration-related issue that concerns both backend servers at 43.249.37.59
and 192.168.131.231 is based on the fact that any user who is a member of the sudoers
group can issue commands as root without providing further authentication. This can be
seen with the following configuration file.

Contents of /etc/sudoers:
[...]
%sudo ALL=(ALL:ALL) NOPASSWD:ALL
[...]

As such, a compromised ubuntu user automatically possesses the same abilities as the
root user itself, just from using sudo to run arbitrary commands as root. It is highly
recommended to employ additional password authentication or, better yet, use a
whitelist of the allowed commands that the ubuntu user is permitted to run as root.

GF-01-009 Android: User DoS and Disruption via MediaPlayerService (Medium)
It was found possible to reliably crash the GreatFire FreeBooks app by sending a crafted
intent against the MediaPlayerService. A malicious application could leverage this
weakness to continuously send intents from the background, and hence reliably prevent
users from actually making use of the app. In addition to this, malicious apps can also
pause and resume audiobook playback via alternatively crafted intents sent to the
exported MediaPlayerService. Please note that while the crashing scenario always
works, no matter of what the user is doing, there is a requirement of having an
audiobook open for the resume and play audiobook disruption to succeed.

Scenario 1: Consistent app crash

This attack is successful without any pre-requirements and will be accomplished
regardless of what the user is doing (i.e. listening to an audiobook or not). The process
can be verified by running the following ADB command while the app is open on an
Android emulator or device.

ADB Command:
adb shell am startservice -n
"org.greatfire.freebook/co.mobiwise.libraryradio.media.MediaPlayerService"

Corresponding logcat stack trace:
08-21 05:46:34.016 E/AndroidRuntime(2819): FATAL EXCEPTION: main
08-21 05:46:34.016 E/AndroidRuntime(2819): Process: org.greatfire.freebook,
PID: 2819

Cure53, Berlin · 08/25/17 6/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

08-21 05:46:34.016 E/AndroidRuntime(2819): java.lang.RuntimeException: Unable
to start service co.mobiwise.libraryradio.media.MediaPlayerService@a855dd6 with
Intent
{ cmp=org.greatfire.freebook/co.mobiwise.libraryradio.media.MediaPlayerService }
: java.lang.NullPointerException: Attempt to invoke virtual method 'boolean
java.lang.String.equals(java.lang.Object)' on a null object reference
[...]
08-21 05:46:34.016 E/AndroidRuntime(2819): Caused by:
java.lang.NullPointerException: Attempt to invoke virtual method 'boolean
java.lang.String.equals(java.lang.Object)' on a null object reference
08-21 05:46:34.016 E/AndroidRuntime(2819): at
co.mobiwise.libraryradio.media.MediaPlayerService.onStartCommand(MediaPlayerServ
ice.java:136)
08-21 05:46:34.016 E/AndroidRuntime(2819): at
android.app.ActivityThread.handleServiceArgs(ActivityThread.java:3010)
08-21 05:46:34.016 E/AndroidRuntime(2819): ... 9 more
08-21 05:46:34.017 W/ActivityManager(614): Force finishing activity
org.greatfire.freebook/.BookShelf

The root cause for this particular crash is that the app fails to check if an intent action
has been sent at all, so that when the intent action is empty (null), the check on line 136
results in a stack trace on MediaPlayerService.java.

File:
FreeBooks-
master/FreeBooks/radio/src/main/java/co/mobiwise/libraryradio/media/MediaPlayerServi
ce.java

Affected Code:
132 public int onStartCommand(Intent intent, int flags, int startId) {
133
134 String action = intent.getAction();
135
136 if(action.equals(NOTIFICATION_INTENT_CANCEL)){

Scenario 2: User disruption via Audiobook playback manipulation

In the second variant, when a user needs to have an audiobook open, it is possible for a
malicious app to control the behavior of the player in accordance with the following
examples.

Example 1: Play / Pause

This plays the audiobook if it is paused, or, in reverse, pauses it when it is being played.

Cure53, Berlin · 08/25/17 7/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

ADB Command:
adb shell am startservice -n
"org.greatfire.freebook/co.mobiwise.libraryradio.media.MediaPlayerService" -a
"co.mobiwise.library.notification.media.INTENT_PLAYPAUSE"

Example 2: Cancel

From the user’s UI perspective, this variant is similar to pause above, as it will pause the
audio if it is playing.

ADB Command:
adb shell am startservice -n
"org.greatfire.freebook/co.mobiwise.libraryradio.media.MediaPlayerService" -a
"co.mobiwise.library.notification.media.INTENT_CANCEL"

The root cause of this issue is that the MediaPlayerService is exported to third-party
apps via intent-filter declaration implicitly.

File:
AndroidManifest.xml

Affected Code:
<service android:name="co.mobiwise.libraryradio.media.MediaPlayerService">
 <intent-filter>
 <action
android:name="co.mobiwise.library.notification.media.INTENT_PLAYPAUSE"/>
 <action
android:name="co.mobiwise.library.notification.media.INTENT_OPENPLAYER"/>
 <action
android:name="co.mobiwise.library.notification.media.INTENT_CANCEL"/>
 </intent-filter>
</service>

It is recommended to review the business need to expose this service to third-party apps
and, if possible avoid exporting it. This could be accomplished by setting the
android:exported="false" attribute on the affected service within the AndroidManifest.xml
file.

Proposed Fix:
<service android:name="co.mobiwise.libraryradio.media.MediaPlayerService"
android:exported="false">

Cure53, Berlin · 08/25/17 8/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

What is more, appropriate exception handling should be implemented on
MediaPlayerService.java, so that line 136 does not crash the entire app when no intent
action is provided.

GF-01-010 Android: User DoS and Disruption via RadioPlayerService (Medium)
It was found the issues affecting MediaPlayerService and described under GF-01-009,
also apply to RadioPlayerService. In a similar manner, this allows malicious apps to
crash or disrupt FreeBooks users, either by crashing the app at any time, or by
Pausing/Resuming audio playback when a radio station is opened. The scenarios
depicting replications of these problems can be found below.

Scenario 1: Consistent app crash.

Crashing the application in a consistent manner can be accomplished by running the
following ADB command.

ADB Command:
adb shell am startservice -n
"org.greatfire.freebook/co.mobiwise.libraryradio.radio.RadioPlayerService"

Corresponding logcat crash:
08-21 06:34:35.008 D/AndroidRuntime(3607): Shutting down VM
08-21 06:34:35.008 E/AndroidRuntime(3607): FATAL EXCEPTION: main
08-21 06:34:35.008 E/AndroidRuntime(3607): Process: org.greatfire.freebook,
PID: 3607
08-21 06:34:35.008 E/AndroidRuntime(3607): java.lang.RuntimeException: Unable
to start service co.mobiwise.libraryradio.radio.RadioPlayerService@57b10ac with
Intent
{ cmp=org.greatfire.freebook/co.mobiwise.libraryradio.radio.RadioPlayerService }
: java.lang.NullPointerException: Attempt to invoke virtual method 'boolean
java.lang.String.equals(java.lang.Object)' on a null object reference
[...]
08-21 06:34:35.008 E/AndroidRuntime(3607): Caused by:
java.lang.NullPointerException: Attempt to invoke virtual method 'boolean
java.lang.String.equals(java.lang.Object)' on a null object reference
08-21 06:34:35.008 E/AndroidRuntime(3607): at
co.mobiwise.libraryradio.radio.RadioPlayerService.onStartCommand(RadioPlayerServ
ice.java:179)

Root cause analysis:

This crash occurs because no intent action was provided, which makes the following
code throw an exception that crashes the app. Essentially, on line 173 the action is set to

Cure53, Berlin · 08/25/17 9/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

null because no intent action was provided. This, in turn, causes line 179 to throw an
exception as the action variable is null and therefore lacks the invoked equals method.

File:
FreeBooks-
master/FreeBooks/radio/src/main/java/co/mobiwise/libraryradio/radio/RadioPlayerServic
e.java

Affected Code:
171 public int onStartCommand(Intent intent, int flags, int startId) {
172
173 String action = intent.getAction();
174
175 /**
176 * If cancel clicked on notification, then set state to
177 * IDLE, stop player and cancel notification
178 */
179 if (action.equals(NOTIFICATION_INTENT_CANCEL)) {
180 if (isPlaying()) {
181 isClosedFromNotification = true;
182 stop();
183 }
184 if (mNotificationManager != null)
185 mNotificationManager.cancel(NOTIFICATION_ID);
186 }
187 /**
188 * If play/pause action clicked on notification,
189 * Check player state and stop/play streaming.
190 */
191 else if (action.equals(NOTIFICATION_INTENT_PLAY_PAUSE)) {
192 if (isPlaying())
193 stop();
194 else if (mRadioUrl != null)
195 play(mRadioUrl);
196
197 }
198
199 return START_NOT_STICKY;
200 }

Scenario 2: User disruption via Play/Resume actions

This service can also be invoked by malicious apps seeking to disrupt users. Two
examples of relevant behaviors are provided next.

Cure53, Berlin · 08/25/17 10/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Example 1: Play / Pause

In this approach, an audiobook is played if it is paused, and, coverly, it gets paused
when being played.

ADB Command:
adb shell am startservice -n
"org.greatfire.freebook/co.mobiwise.libraryradio.media.RadioPlayerService" -a
"co.mobiwise.library.notification.radio.INTENT_PLAYPAUSE"

Example 2: Cancel

From the user’s UI perspective, this is similar to Pause due to ceasing the audio being
played.

ADB Command:
adb shell am startservice -n
"org.greatfire.freebook/co.mobiwise.libraryradio.media.RadioPlayerService" -a
"co.mobiwise.library.notification.radio.INTENT_CANCEL"

The very basic reason as to why these scenarios pan out is that the RadioPlayerService
is implicitly exported to third-party apps via its intent-filter declaration in the Android
Manifest.

File:
AndroidManifest.xml

Affected Code:
<service android:name="co.mobiwise.libraryradio.radio.RadioPlayerService">
 <intent-filter>
 <action
android:name="co.mobiwise.library.notification.radio.INTENT_PLAYPAUSE"/>
 <action
android:name="co.mobiwise.library.notification.radio.INTENT_OPENPLAYER"/>
 <action
android:name="co.mobiwise.library.notification.radio.INTENT_CANCEL"/>
 </intent-filter>
</service>

It is recommended to extrapolate the guidance offered under GF-01-009 to resolve the
problems described here.

Cure53, Berlin · 08/25/17 11/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

GF-01-011 Android: User Disruption via PlayerControllerBroadcast (Low)
It was found that malicious apps can Pause and Resume radio and audiobook playback
at any time by sending crafted broadcasts. Unlike GF-01-009 and GF-01-010, this does
not crash the app, yet could be useful for adversaries wishing to annoy the users to the
point of quitting the use of GreatFire’s product. In other words, this issue makes listening
to an audiobook or a radio station unfeasible. Please note that this disruption is limited to
a situation when a user has the audiobook or a radio station already open.

The problem can be replicated by opening a radio station or an audiobook and running
any of the following ADB Commands.

Media Player ADB Commands:
adb shell am broadcast -a "co.mobiwise.library.ACTION_STOP_MEDIAPLAYER"
adb shell am broadcast -a "co.mobiwise.library.notification.media.INTENT_CANCEL"
adb shell am broadcast -a
"co.mobiwise.library.notification.media.INTENT_OPENPLAYER"
adb shell am broadcast -a
"co.mobiwise.library.notification.media.INTENT_PLAYPAUSE"

Radio Player ADB Commands:
adb shell am broadcast -a "co.mobiwise.library.ACTION_STOP_RADIOPLAYER"
adb shell am broadcast -a "co.mobiwise.library.notification.radio.INTENT_CANCEL"
adb shell am broadcast -a
"co.mobiwise.library.notification.radio.INTENT_OPENPLAYER"
adb shell am broadcast -a
"co.mobiwise.library.notification.radio.INTENT_PLAYPAUSE"

As with the above problems, the root cause for this issue can be found in the Android
Manifest, which implicitly exports the PlayerControllerBroadcast receiver to third-party
apps via its intent-filter declaration.

File:
AndroidManifest.xml

Affected Code:
<receiver
android:name="co.mobiwise.libraryradio.broadcast.PlayerControllerBroadcast">
 <intent-filter>
 <action android:name="co.mobiwise.library.ACTION_STOP_RADIOPLAYER"/>
 <action android:name="co.mobiwise.library.ACTION_STOP_MEDIAPLAYER"/>
 <action
android:name="co.mobiwise.library.notification.radio.INTENT_OPENPLAYER"/>
 <action
android:name="co.mobiwise.library.notification.radio.INTENT_PLAYPAUSE"/>

Cure53, Berlin · 08/25/17 12/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 <action
android:name="co.mobiwise.library.notification.radio.INTENT_CANCEL"/>
 <action
android:name="co.mobiwise.library.notification.media.INTENT_PLAYPAUSE"/>
 <action
android:name="co.mobiwise.library.notification.media.INTENT_CANCEL"/>
 <action
android:name="co.mobiwise.library.notification.media.INTENT_OPENPLAYER"/>
 </intent-filter>
</receiver>

It is recommended to stop exporting this receiver to third-party apps. Mitigation could be
accomplished by setting the android:exported attribute to "false" in a manner
demonstrated next.

Proposed Fix:
<receiver
android:name="co.mobiwise.libraryradio.broadcast.PlayerControllerBroadcast"
android:exported="false">

GF-01-012 Android: Intent Forward via NotificationBroadcastReceiver (Medium)
It was found that the NotificationBroadcastReceiver, available on the latest build
provided for testing, is exported to third-party apps. In essence, it will forward intent data
to any activity in the app, regardless of whether it is exported or not. The receiver will
instantiate the class for the supplied activity’s name and forwards the data to this activity.
This could allow malicious apps to reach and attack functionality in other and not
exported activities of the application. A lower-severity issue also exists here as the
receiver can also open third-party provided URLs in the Android web browser.

Issue 1: Intent data forward

Execution of the code path in the receiver can be verified by consulting the lines below.
First, a crafted broadcast must be sent, so that execution of the appropriate code path is
verified.

ADB Command:
adb shell am broadcast -a "notification_cancelled" --es ""from"" "meow" --es
""content"" "test"

Completing this step results in the app attempting to instantiate a “meow” class, which
shows a stack trace on logcat but does not crash the app as there is appropriate
exception handling in place for such cases.

Cure53, Berlin · 08/25/17 13/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Logcat trace:
08-21 07:40:44.950 W/System.err(3708): Caused by:
java.lang.ClassNotFoundException: Didn't find class "meow" on path:
DexPathList[[zip file "/data/app/org.greatfire.freebook-
1/base.apk"],nativeLibraryDirectories=[/data/app/org.greatfire.freebook-
1/lib/x86, /data/app/org.greatfire.freebook-1/base.apk!/lib/x86, /vendor/lib,
/system/lib]]
[...]
08-21 07:40:44.950 W/System.err(3708):
at java.lang.Class.classForName(Native Method)

The exception corresponds to the following code snippet, which is also attempting to
forward third-party provided data to any attacker-supplied activity within the app context
(i.e. only activities in the FreeBooks app can be invoked).

File:
org/greatfire/gfapplib/services/NotificationBroadcastReceiver.java

Affected Code (decompiled):
36 public void onReceive(Context var1_1, Intent var2_2) {
37 var3_3 = var2_2.getStringExtra("web");
38 if (var3_3 != null) {
39 var4_4 = new Intent("android.intent.action.VIEW",
Uri.parse((String)var3_3));
40 var4_4.setFlags(268435456);
41 var1_1.startActivity(var4_4);
42 return;
43 }
44 var6_5 = var2_2.getAction();
45 var7_6 = var2_2.getStringExtra("from");
46 var8_7 = var2_2.getStringExtra("content");
47 try {
48 var10_9 = var20_8 = Class.forName(var7_6);
49 }
50 catch (ClassNotFoundException var9_12) {
51 var9_12.printStackTrace();
52 var10_9 = null;
53 }
54 if (var10_9 == null) ** GOTO lbl27
55 try {
56 if (var10_9.newInstance() instanceof Activity) {
57 var14_10 = new Intent(var1_1, var10_9);
58 var14_10.setFlags(268435456);
59 var14_10.putExtra("notify", true);
60 var14_10.putExtra("content", var8_7);
61 SystemUtils.isAppRunning(var1_1, var1_1.getPackageName());

Cure53, Berlin · 08/25/17 14/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

62 Log.d((String)"BroadcastReceiver", (String)("action " +
var6_5 + " " + var7_6 + " " + var10_9 + " " + var1_1.getPackageName()));
63 var1_1.startActivity(var14_10);
64 return;
65 }
66 lbl27: // 3 sources:
67 Toast.makeText((Context)var1_1,
(CharSequence)"\u53d1\u73b0\u5f02\u5e38", (int)1);
68 return;
69 }

This issue bears similarity to the intent forwarding weaknesses since it lets attackers
reach activities that are not exported.

Issue 2: Browser

It was also found that the receiver, under a different code path, will open URLs received
via broadcasts on the Android browser. While the security implications of this behavior
are merely informational, this issue is briefly described here for the sake of
completeness. The flaw at hand can be verified by running either of the following ADB
commands while the app is open. This will result in the application opening the third-
party provided website without any warnings or prompts on the Android browser.

ADB Commands:
adb shell am broadcast -a "notification_clicked" --es ""web""
"https://cure53.de"
adb shell am broadcast -a "notification_cancelled" --es ""web""
"https://cure53.de"

When one reviews the logcat logs carefully, it can be seen how the UID corresponds to
that of the app on the phone.

Evidence of Browser Invocation by FreeBooks app:
08-21 07:14:53.998 I/ActivityManager(614): START u0
{act=android.intent.action.VIEW dat=https://cure53.de/... flg=0x10000000
cmp=com.android.browser/.BrowserActivity} from uid 10090 on display 0

Commands:
su - app_90
app_90@vbox86p:/data/data/org.greatfire.freebook $ id

Output:
uid=10090(u0_a90) gid=10090(u0_a90) groups=10090(u0_a90)

Cure53, Berlin · 08/25/17 15/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Both issues occur because the receiver is implicitly exported to third-party apps via its
intent-filter declaration in the Android Manifest.

File:
AndroidManifest.xml

Affected Code:
<receiver
android:name="org.greatfire.gfapplib.services.NotificationBroadcastReceiver">
 <intent-filter>
 <action android:name="notification_cancelled"/>
 <action android:name="notification_clicked"/>
 </intent-filter>
</receiver>

It is recommended to review the business need for this receiver and ideally remove it, or,
at the very least, stop exporting it.

GF-01-013 Backend: User has Write Access to Github Repository (Medium)
It was found that the ubuntu user has write access to the Github repository wherein code
for the backend and the mobile app are stored, namely:

git@github.com:greatfire/CollateralFreedomProxy.git.

An attacker who gains access to this repository could easily place a backdoor in the
server-side code or even add malware to the mobile application.

Production systems should never have access to source code repositories and shall not
even store anything else than the newest revision of the project. In some cases, the Git
history could reveal confidential information, for instance when one commit contained
passwords. It is recommended to deny access to the Github repository when using the
private key stored in ubuntu’s .ssh directory.

GF-01-014 Backend: Weak file permissions and lack of separation (Medium)
It was found that the /home/ubuntu directory can be accessed by any user on the
system. This folder contains configurations, log files and Git repositories. One example
of consequences in this realm would be that a user with limited access could read the
nagios configuration (server/objects/hosts/ ec2-us-psql-master.cfg) or web server logs
(/home/ubuntu/CollateralFreedomProxy/ backend/nginx/local/logs/error.log).

Applications should be run only by the dedicated user with no access permissions to
data unrelated to the service.

Cure53, Berlin · 08/25/17 16/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

GF-01-001 Android: Unencrypted books on the SD Card might trouble users (Low)
It was found that the GreatFire FreeBooks Android app currently saves all books viewed
by a user in clear-text on the SD Card. This provides a side-channel since malicious
apps running on a victim’s phone can gain insights about what a user is reading and
listening to. In addition to this, if a Free Books user is stopped by the authorities,
extraction of the SD Card does not require knowledge of the phone’s unlock pattern. The
authorities could directly learn what the user is reading and/or is listening to. In certain
political contexts, the unveiled lists may put the Free Books’ user into legal trouble. An
additional issue exists in terms of lack of integrity. Notably, a malicious app or an
attacker with physical access to the device can trivially change book files. By this logic,
unexpected files are viewed when the user opens them unsuspectingly.

It can be verified that the app downloads all book material, including PDFs and MP3 files
for the audiobook chapters, into a specific SD Card location. This can be accomplished
by simply using the app and then reviewing the contents of the directory furnished below.

SD Card storage path:
/storage/emulated/0/Android/data/org.greatfire.freebook

Moreover, PDF and MP3 files can be trivially replaced on the SD Card, so that the
rendered content is different than intended. This was confirmed during testing by
replacing a PDF book with a Cure53 report in a PDF format. Note that the FreeBooks
app will render the replaced file without any warnings.

Fig.: Cure53 Report in a PDF format opened instead of the intended book

Cure53, Berlin · 08/25/17 17/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to use the Android internal app storage to avoid leakage to malicious
apps and attackers with physical access. When not enough storage is available on the
internal Android storage, then book material should ideally be encrypted on the SD Card.
This way, malicious apps and physical attackers at least cannot easily see what the user
was reading or listening to. This being said, perhaps the mere presence of the
org.greatfire.freebook application on the SD Card might be enough to get users in
trouble when dealing with the authorities. Regarding the potential space issue on the
internal Android storage, the app can reduce its storage usage by half if ZIP files were
removed after downloading. At the time of writing, files are downloaded as ZIP files and
uncompressed, but the ZIP files are not removed, hence taking approximately twice as
much space as they should.

GF-01-002 Android: Backup flag might allow data theft (Info)
It was found that the Android app has the backup flag enabled. This might allow data
theft in rare situations where the user has USB debugging enabled. This issue can be
observed on the Android Manifest of the application.

File:
AndroidManifest.xml

Affected Code:
<application android:allowBackup="true" android:icon="@drawable/ic_launcher"
android:label="@string/app_name" android:largeHeap="true"
android:supportsRtl="true" android:theme="@style/RootTheme">

It is recommended to disable the allowBackup flag3 on the Android Manifest to avoid
potential data leakage in future releases.

GF-01-004 Android: Privacy concerns due to screenshot leaks (Info)
It was found that the GreatFire FreeBooks app fails to leverage the available platform
protections to prevent information leakage via screenshots. This allows applications with
screen recording or root privileges to capture all information displayed on the screen
while the app is opened. A malicious app could leverage this weakness to spy on what
the user reads, as well as on their general reading habits.

The issue can be verified by running the following commands while the emulator or a
device running the FreeBooks app is open.

3 http://developer.android.com/reference/android/R.attr.html#allowBackup

Cure53, Berlin · 08/25/17 18/29

https://cure53.de/
http://developer.android.com/reference/android/R.attr.html#allowBackup
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Commands:
adb shell screencap -p /mnt/sdcard/screenshot1.png
adb pull /mnt/sdcard/screenshot1.png

Depending on what the user is reading or listening to, different images appear. A
selection of the results can be consulted below.

Fig.: User-activity information leakage via screenshots

It is recommended to ensure that all WebViews have the Android FLAG_SECURE flag4

set. This will guarantee that even applications running with root privileges are unable to
directly record information displayed by the app on screen. Ideally, this mitigation should
be implemented as a BaseActivity that all other app activities inherit.

GF-01-005 Android: User disruption via TagManagerPreviewActivity (Low)
It was found that the Android FreeBooks app currently exports a
TagManagerPreviewActivity activity. This appears to be an attempt to use the
GoogleTagManager on Firebase5, however the implementation seems incomplete. A
malicious app or website could leverage this weakness to continuously show blank
screens, hence disrupting the reading of FreeBooks’ users. The flaw can be replicated

4 http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
5 https://developers.google.com/tag-manager/android/v5/

Cure53, Berlin · 08/25/17 19/29

https://cure53.de/
https://developers.google.com/tag-manager/android/v5/
http://developer.android.com/reference/android/view/Display.html#FLAG_SECURE
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

by running the following command on a phone or an emulator that has the FreeBooks
app installed.

ADB Command:
adb shell am start -a "android.intent.action.VIEW" -n
"org.greatfire.freebook/com.google.android.gms.tagmanager.TagManagerPreviewActiv
ity"

This results in a blank screen being shown by the app.

Fig.: A blank screen is shown while the user is reading a book

The main reason behind this issue can be found on the Android Manifest, which
currently exports this activity to third-party websites and apps implicitly, via its intent-filter
declaration.

Cure53, Berlin · 08/25/17 20/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

File:
AndroidManifest.xml

Affected Code:
<activity
android:name="com.google.android.gms.tagmanager.TagManagerPreviewActivity"
android:noHistory="true">
 <intent-filter>
 <data android:scheme="tagmanager.c.org.greatfire.freebook"/>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>
 </intent-filter>
</activity>

It is recommended to review the business need to export this activity and, if possible,
remove it from the Android Manifest. Alternatively, the activity could be used only
internally if it was to be no longer exported in the Manifest. To accomplish this, an activity
shall be added to the declaration as noted below.

Proposed Fix:
<activity
android:name="com.google.android.gms.tagmanager.TagManagerPreviewActivity"
android:noHistory="true" android:exported="false">

GF-01-008 Backend: Lack of Consistent Server Hardening (Low)
Most Linux default installations have several security options disabled due to requiring
individual work or possibly affecting the system’s usability for the majority of the users.
There are several configuration options listed below and known for significantly
improving the security of a Linux server.

General characteristic of being up-to-date
It was found that the software running on the servers is outdated. Both the kernel and
the installed packages are affected by this pattern. Old software frequently contains
known vulnerabilities, so it is recommended to perform a full system update and deploy
a broader update strategy.

Hidepid
Every user can see all of the processes and their parameters on a Linux server. Under
certain premise, this behavior might leak information or point an attacker in the right
direction when it comes to escalating privileges. Hidepid is an option that can be

Cure53, Berlin · 08/25/17 21/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

activated when the procfs6 is mounted. This can be achieved with the following entry
inside the server’s fstab.

Command:
$ cat /etc/fstab

Output:
[...]
proc /proc proc hidepid=2 0 0

If enabled, a non-root user can exclusively see the processes that were started by them
and not others.

Dmesg Restrict
Dmesg7 is a Linux command showing messages printed by the kernel. It contains
information about the boot process and hardware, which means that in some cases it
might disclose certain details to an attacker. This especially holds for an adversary who
already has limited privileges on the server and can now escalate to root. There is no
reason why a non-root user should see this output. It is recommended to restrict the
access to kernel messages to root by adding the following line to the sysctl
configuration:

kernel.dmesg_restrict = 1

Remote Syslog
Alongside local logging, it is advised to set up an external logging server. In case the
server is compromised, an attacker can easily remove all evidence from the log files,
thus making it difficult to even detect the attack, not to mention preventing the
maintainers from understanding the attack that just took place. The consequences would
be alleviated had the logs been stored on another server.

File Change Monitoring
An attacker who compromised a server most likely seeks to stay on the system as long
as possible. This can be achieved by manipulation of e.g. executables on the server. It is
recommended to verify the integrity of the installed packages with the regular use of a
file change monitor. This would aid detection of manipulations.

su Restriction
The su command is used to log in as another user. If the system is not configured
properly, everyone is allowed to take advantage of this util and can authenticate as users

6 https://en.wikipedia.org/wiki/Procfs
7 https://en.wikipedia.org/wiki/Dmesg

Cure53, Berlin · 08/25/17 22/29

https://cure53.de/
https://en.wikipedia.org/wiki/Dmesg
https://en.wikipedia.org/wiki/Procfs
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

whose passwords are known. For example, a compromised service, which runs on the
server, enables an attacker to use or guess passwords for other accounts. This could
directly assist the goals of escalating privileges. As there is no common use-case for a
service-user to be privy to su, it is advised to disallow this kind of usage. The issue can
be solved in two steps. Firstly, all users who should be allowed to use su must be added
to the wheel group. Secondly, the su-configuration needs some changes. A specific line
shown next needs to be added.

File:
/etc/pam.d/su
auth required pam_wheel.so group=wheel

GF-01-015 Proxy: Static AES Initialization Vector and Encryption Key (Low)
It was found that a static AES initialization vector, along with an ever so slightly
obfuscated static encryption key, are being used to encrypt/decrypt data. This is not a
recommended good practice as the encrypted data can be easily and quite reliably
detected in transit and storage. On the one hand, it is acknowledged that this might have
been a conscious design decision to take the load off the backend infrastructure. On the
other hand, the impact of a properly designed encryption scheme with a prepended and
asymmetrically encrypted, but cyclically changing symmetric encryption key and
dependent data, would not be much higher than the current cryptographically unsafe
low-impact scheme.

File:
/android-library/jni/aes-wrap.c

Affected Code:
static unsigned char aesIV[] = {0xe9, 0x82, 0xdd, 0x94, 0x9a, 0xea, 0xa7, 0x44,
0x12, 0x2a, 0x18, 0xd9, 0xc5, 0x46, 0x91, 0x76};
static unsigned char aesKEY[] = {0x6e, 0xfe, 0xc7, 0xe2, 0x01, 0x73, 0x9c, 0x93,
0x95, 0xf3, 0x90, 0xcb, 0x74, 0x3d, 0x4e, 0xda,
 0x88, 0x6e, 0x8b, 0xa2, 0xc0, 0x51, 0x0a,
0x4c, 0x15, 0x56, 0x9f, 0x2b, 0xfe, 0xaa, 0xdc, 0x10};

[...]

void init_aes_key(void* vm){
 aesKEY[1] = aesKEY[1] + 0x02;
 aesKEY[2] = aesKEY[1] - 0x02;
 aesKEY[3] = aesKEY[4] >> 1;
 aesKEY[9] = aesKEY[3] + 0x09;
}

Cure53, Berlin · 08/25/17 23/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is strongly recommended to use an established encryption scheme as implemented by
libraries such as NaCl or libsodium instead of relying on the handcrafted and easily
breakable cryptographic code. Please refer to the Notes on Cryptographics
Implementations included later in this document for additional details.

GF-01-016 Proxy: Oversize AES Initialization Vector Buffer Size (Low)
It was found that the constant, which is employed to specify the size for copying the
initialization vector into the respective programmatically used buffers, suffers from having
wrong dimension. Therefore too much data from the end of the static initialization vector
(right now the beginning of the static encryption key) is copied to the equally oversized
buffer. While this does not directly lead to an exploitable scenario, it still poses a looming
problem and should be addressed.

File:
/android-library/jni/aes-wrap.c

Affected Code:
char* aes_message_decode(const char *mix_encrypt_msg) {
[...]
 unsigned char ivenc[AES_BLOCK_SIZE] = {0};
 const char *raw = mix_encrypt_msg;
 int i = 0, j = 0, idx = 0;
[...]

 while(j < AES_BLOCK_SIZE) {
ivenc[j] = *(raw + j);
key[i] = ivenc[j];
//printf("key = %s, %c, j = %d, i = %d\n", key, ivenc[j], j, i);
i += 2, j ++;

 }
[...]

char* aes_message_encode(const char *textbuf) {
[...]
 unsigned char ivenc[AES_BLOCK_SIZE] = {0};
 int i = 0, j = 0, idx = 0;
[...]
 unsigned char aes_key[32] = {0};
[...]

 for(j=0, i=0; j < AES_BLOCK_SIZE; j++, i+=2) {
ivenc[j] = aes_key[i];

 }
[...]

Cure53, Berlin · 08/25/17 24/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

unsigned char* restore_from_cache(char* filename, unsigned long *nsize) {
[...]
 unsigned char ivenc[AES_BLOCK_SIZE] = {0};

 memcpy(ivenc, aesIV, AES_BLOCK_SIZE);
[...]

int save_to_cache(char* filename, unsigned char* membuf, int nsize) {
[...]
 unsigned char ivenc[AES_BLOCK_SIZE] = {0};

 memcpy(ivenc, aesIV, AES_BLOCK_SIZE);
[...]

It is recommended to change the constant with respect to block size used. Any correct
version may be considered and it will look similar to: sizeof(aesIV). Another constant like
AES_IV_SIZE instead of the inappropriate application of AES_BLOCK_SIZE can also be
used in this realm.

GF-01-017 Proxy: Low resolution non-random Message Key Generation (Low)
It was found that the random number used for the generation of the message keys is
based upon a simple and no longer recommended MD5-hash of the system’s time() and
is therefore not considered cryptographically strong. Additionally, the low resolution
system’s time() was turned into a space-reduced ctime()-string, resulting in an even
lower random variation. The resulting MD5-hash of 128 bits is then widened to the 256
bits dictated by the existing implementation by further turning it into a hexdump of the
binary value, which fails to increase the resulting cryptographic value in any way.

File:
/android-library/jni/aes-wrap.c

Affected Code:
char* aes_message_encode(const char *textbuf) {
[...]
 int i = 0, j = 0, idx = 0;
[..]
 unsigned char aes_key[32] = {0};
[...]
 time_t tm = time(NULL);
 char *stm = ctime(&tm);
 unsigned char md5[16] = {0};

 MD5(stm, strlen(stm), md5);
 for(i=0; i<16; i++) {

sprintf(aes_key+(i<<1), "%02x", md5[i]);

Cure53, Berlin · 08/25/17 25/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 }
[...]

It is recommended to use any of the cryptographic random number generators available
in a UNIX-based system, like /dev/urandom or the AES-CTR DRBG. Though usage of
/dev/random would have been proposed in the past, it is no longer recommended
because it is prone to a particular set of problems.

GF-01-018 Proxy: Hardcoded Buffer Size value across different Modules (Low)
It was found that a hardcoded buffer size value is being used across different modules.
While this is quite problematic within a single module in its own right, it is certainly not
advisable across different modules. It should especially be stopped on a buffer allocated
in one module’s function and later on taken on for the externally supplied data, as it is
being read into by the called function residing in a completely different module.

Affected Files:
/android-library/jni/aes-wrap.c
/android-library/jni/proxy-bridge.c

Affected Code:
int get_cacert_pembuf(char *apkfile, char *pembuf) {
[...]
 unzFile *zf = unzOpen(apkfile);
[...]
 unzOpenCurrentFile(zf);
 err = unzReadCurrentFile(zf, pembuf, 242842);
 if(err > 0) {
 DD("get_cacert_pembuf.nread = %d, totalsize = 242842\n", err);
[...]

JNIEXPORT int JNICALL Java_org_greatfire_XPatch_setApkInfo(JNIEnv *env, jobject
thiz, jstring apkpath, jstring apppath, int versioncode, jstring vername,
jstring pkgname) {
 const jbyte *utf8 = NULL;
[...]
 char* pembuf = NULL;
[...]

utf8 = (* env)->GetStringUTFChars(env, vername, NULL);
[...]
 pembuf = calloc(242842, sizeof(char));
 if(pembuf) {
[...]
 get_cacert_pembuf(utf8, pembuf);
[...]

Cure53, Berlin · 08/25/17 26/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended for the length of the buffer to be passed from
Java_org_greatfire_XPatch_setApkInfo() to the called get_cacert_pembuf() with an
additional pembufsize paramete. The later should be used there to read into the
allocated buffer and make sure that the buffer previously allocated on the heap is not
overrun.

Notes on Cryptographic Implementations
The Android client uses an AES-based symmetric encryption scheme in order to encrypt
books before delivering them to users. The scheme relies on a custom AES wrapper that
includes static keys and initialization vectors. The same static key and IV are used to
encrypt a given book across all users.

This approach cannot be seen as satisfactory in terms of confidentiality or integrity
guarantees around the data. An attacker can decrypt all books on the fly and may also
violate integrity guarantees. This can result in the attacker, for example, sending
malicious payloads disguised as books. In practice, no security gains whatsoever are
actually provided by the current design. A proposal for an improved design, which
actually fosters confidentiality and integrity, is supplied next.

1. The FreeBooks server generates a long-term, static X5519 key pair.
2. The FreeBooks server’s public key is statically embedded inside the FreeBooks

client binary.
3. Every FreeBooks user generates an X25519 public key pair on signup.
4. The FreeBooks user generates a shared secret using the newly generated secret

key and the server's embedded public key.
5. The FreeBooks user communicates this new device's public key to the server

(which lasts for the lifetime of the device.)
6. The server can now additionally calculate the same shared secret and use it to

encrypt a bundle of books to the client.

The Strengths of the Proposal:
1. Confidentiality and integrity are preserved.
2. Traffic analysis is less potent.
3. Pinning of the server's public key acts as a kind of certificate Pinning mechanism,

which helps prevent Man-in-the-Middle attacks.

The Weaknesses of the Proposal:
1. The proposed design relies on a trust-on-first-use authentication with no out-of-

band authentication. However, the latter is likely not necessary given the use-
case.

Cure53, Berlin · 08/25/17 27/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

2. The proposed design probably requires more CPU usage for the server, which
now has to encrypt towards a different public key for each user. This overhead
can be lessened by having the server re-encrypt the single symmetric key used
to encrypt the book instead of re-encrypting the entire book towards each client
who requests it.

Conclusions
The findings of this Cure53 summer 2017 security assessment of the GreatFire project
overall point to a relatively well-handled user-privacy and general safety at the Free
Books application. Five members of the Cure53 team spent a total of eight days on
completing this assessment, ultimately discovering eighteen relevant issues. Given the
scope and available resources, the testing team reached a fairly good coverage. Still,
there is a potential for expanding the investigation in the future, as the sheer volume of
sources and configuration files warrants additional and more in-depth reviews.

Though the number of eighteen findings might appear concerning, the so-called levels of
criticality must be accounted for in issuing a final verdict. In fact, the GreatFire Free
Books project does not suffer from high-level risks, but is rather prone to minor flaws.
Exactly half of the discoveries belong to the realm of general weaknesses, which means
that the usual urgency of deploying fixes is minimized. The main themes pertinent to the
actual nine security vulnerabilities revolve around DoS problems, few issues regarding
server security with the worst case being privilege escalation, as well as potential for the
attackers to get their hands on the Git repositories with non-public source code. What is
vital to note is that none of these seemingly threatening issues can be achieved without
gaining access to the GreatFire’s infrastructure beforehand.

Besides the already commented on cryptographic implementation arena, two more
aspects that deserve further summaries are C and Java code, as well as the Android
application itself. As for the former, it shall be emphasized that the complete coverage of
the Java and C source code during audit still left the Proxy Bridge as somewhat of an
uncharted territory, especially due to this component’s complexity. The Cure53 testers
shared the general impression that the code was often hard to read and seemed
obfuscated, thus slowing down the usual pace of conducting an audit. For that reason, it
is recommended to refactor the code and optimize readability for future quality checks
and reviews. It was further noticed that many code elements were handcrafted by the
FreeBooks maintainers rather than rely on taking advantage of the available and suitable
libraries. This impression extended to the cryptographic realm, as it came as a surprise
for Cure53 that no libraries were used (i.e. neither libsodium nor NaCl).

Cure53, Berlin · 08/25/17 28/29

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As a general rule of thumb, the benefit of using the existing frameworks and tools is
tremendous, much outweighing the potential adequacy of home-made code and
components. In effect, the final verdict is somewhat of a paradox. On the one hand,
there were no major security-relevant findings in the C/Java code realm. On the other
hand, the code is not optimal, with clear advice to focus on refactoring and redesigns.
Shifting towards the existing modern libraries can vastly raise the stability and
robustness of the project at hand, with more details on this matter supplied above in the
Notes on Cryptographic Implementations section.

Moving on to the arena of the Android application, the first and foremost observation is
that it exposes a large attack surface to third-party apps. What is more, BROWSABLE
activities extended the potential of different attack scenarios to websites. This resulted in
a relatively high total number of findings as several activities, services and broadcast
receivers were exported. Among the notable issues, problems related to the SD card
usage constituted one pattern. Because the SD Card location easily allows for
extraction, its analysis revealed possible race conditions leading to RCE due to
downloading upgrade APKs to the SD Card (GF-01-003). Privacy concerns may also
arise in situations where the authorities stop a FreeBooks user, extract the card and
access the list of possibly “forbidden” books (see GF-01-001). With the
MediaPlayerService and RadioPlayerService being the two exported media services, it
was discovered that attackers may crash FreeBooks or interfere with audiobook and
radio station playbacks, as noted in GF-01-009 and GF-01-010. Broadcast Receivers
were also found to be processing intents from third-party applications. This behavior
could be abused to reach functionality in non-exported activities (GF-01-012) or, once
again, for playback interference (GF-01-011). As already noted, though, none of the
issues pose tremendously direct risk of harm.

In sum, the GreatFire FreeBooks application stood relatively strong with respect to the
actual degree of severity assigned to the spotted issues. The fixing process around the
discoveries alone, however, is not sufficient. This is because the main problems
stemmed from the complexity and suboptimal characteristics of the audited code. In that
sense, there is much room for more bird’s eye view reassessments of the project and
corresponding generalist optimizations at different planes are advised.

Cure53 would like to thank Martin Johnson and Charlie Smith from the GreatFire team
for their excellent project coordination, support and assistance, both before and during
this assignment.

Cure53, Berlin · 08/25/17 29/29

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report GreatFire FreeBooks App 08.2017
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	GF-01-003 Android: Possible updater RCE via racecondition on SD Card (Medium)
	GF-01-006 Backend: Privilege Escalation via Cron-Restart Script (Medium)
	GF-01-007 Backend: Sudoers Group does not require a Password (Medium)
	GF-01-009 Android: User DoS and Disruption via MediaPlayerService (Medium)
	GF-01-010 Android: User DoS and Disruption via RadioPlayerService (Medium)
	GF-01-011 Android: User Disruption via PlayerControllerBroadcast (Low)
	GF-01-012 Android: Intent Forward via NotificationBroadcastReceiver (Medium)
	GF-01-013 Backend: User has Write Access to Github Repository (Medium)
	GF-01-014 Backend: Weak file permissions and lack of separation (Medium)

	Miscellaneous Issues
	GF-01-001 Android: Unencrypted books on the SD Card might trouble users (Low)
	GF-01-002 Android: Backup flag might allow data theft (Info)
	GF-01-004 Android: Privacy concerns due to screenshot leaks (Info)
	GF-01-005 Android: User disruption via TagManagerPreviewActivity (Low)
	GF-01-008 Backend: Lack of Consistent Server Hardening (Low)
	GF-01-015 Proxy: Static AES Initialization Vector and Encryption Key (Low)
	GF-01-016 Proxy: Oversize AES Initialization Vector Buffer Size (Low)
	GF-01-017 Proxy: Low resolution non-random Message Key Generation (Low)
	GF-01-018 Proxy: Hardcoded Buffer Size value across different Modules (Low)

	Notes on Cryptographic Implementations
	Conclusions

